Maintaining a Reputation when Strategies are Imperfectly Observed
 Fudenberg and Levine (ReStud, 1992)
 summary by N. Antić

In a repeated game players can develop a reputation for playing in a specific way. Building a reputation can take time, so patient players are more likely to invest.

Example

\square The main point of this paper can be illustrated in a repeated "Chain Store Paradox" example

Figure 1: Stage game of the chain store paradox

- Monopolist facing an infinite sequence of potential entrants, can respond aggressively or passively
- Period t entrant observes the entire preceding history
- Assume the monopolist can be a commitment type with a preference for fighting
- All entrants have a common prior about this, $\varepsilon>0$

Theorem. In any sequential equilibrium, if δ is close to 1 , then player 1's expected average payoff in equilibrium is close to 2 .

Proof Sketch. Fix a sequential equilibrium and let t be the first period that player 1 plays "Acquiesce". If $t=\infty$, player 2 is playing "Stay Out" and player 1 gets payoff 2. If $t<\infty$, then deviating to playing "Fight" in all periods will give payoff at least -1 in period t and say s periods after it (until player 1's posterior is sufficiently high) and payoff 2 in subsequent periods.

- Result extends to finite number of commitment types

The Basic Environment

■ 2 Players in each period, player 1 (the long-run player) and Player 2 (one of a sequence of short-run players)

- Denote short-run player in period t by player 2_{t}

Stage game pure action sets, A_{1} and A_{2}, are finite (not critical)

- Denote mixed actions by $\alpha_{i} \in \Delta\left(A_{i}\right)$

Imperfect public monitoring

- Players observe a random outcome $y \in Y$, where $|Y|=$ $M<\infty$
- Given action profile $a \in A$, the probability of signal y is $\rho(y \mid a)$
- Includes perfect monitoring as a special case
- Another special case is an extensive form stage game where only terminal payoffs are observable

All short-run players have a single type

- Payoff of player 2 is common knowledge
- Depends only on public signal y and not directly on a_{1}
- Same assumption for long-run players

Short-run players' vNM utility index is $u_{2}: Y \times A_{2} \rightarrow \mathbb{R}$

- Player 2's expected payoff from mixed action $\alpha \in \Delta(A)$ is

$$
v_{2}(\alpha)=\sum_{\left(a_{1}, a_{2}\right) \in A} u_{2}\left(y, a_{2}\right) \rho\left(y \mid\left(a_{1}, a_{2}\right)\right) \alpha_{1}\left(a_{1}\right) \alpha_{2}\left(a_{2}\right)
$$

Player 1's type space, Ω, is a metric space
■ Common knowledge that short-run players have identical prior, μ, about player 1's type

- μ is a measure on $\mathcal{B}(\Omega)$
\square Rational type, $\omega_{0} \in \Omega$, has stationary preferences over time, with vNM utility index $u_{1}\left(\alpha_{1}, y, \omega_{0}\right)$
- Assume $\mu\left(\omega_{0}\right)>0$
- Commitment types have a preference for playing a certain action-including mixed actions
- Will need commitment types with preferences for all mixed actions
- Trick to make them expected utility maximizers (nonstationary preferences over time)

Utility index for player 1 is uniformly bounded: $u_{1}\left(\alpha_{1}, y, \omega\right) \in$ $[\underline{u}, \bar{u}]$ for all ω

- Assume commitment types have full support
- Let η be the measure on mixed actions induced by μ
- By LDT write $\eta=\eta_{0}+\eta_{1}$, where $\eta_{0} \ll \lambda$
- Assume Radon-Nykodym derivative of η_{0} is bounded away from 0

Equilibrium

History for player 2 is the public history $H_{t} \in Y^{t}$

- Pure strategy for player 2_{t} is $s_{2}^{t}: H_{t-1} \rightarrow A_{2}$
- S_{2}^{t} denotes the set of all pure strategies for player 2_{t}

Player 1 knows the public history and his private history $H_{t}^{1} \in$ $\left(A_{1}\right)^{t}$

- Pure strategy for player 1 in period t is $s_{1}=\left\{s_{1}^{t}\right\}_{t=1}^{\infty}$ where $s_{1}^{t}: H_{t-1} \times H_{t-1}^{1} \rightarrow A_{1}$
- S_{1} denotes the set of all pure strategies for player 1

Mixed strategies for players 1 and 2_{t} are $\sigma_{1} \in \Delta\left(S_{1}\right)$ and $\sigma_{2}^{t} \in$ $\Delta\left(S_{2}^{t}\right)$, respectively

- A mixed strategy for player 2 is $\sigma_{2} \in \Delta\left(\times_{t=1}^{\infty} S_{2}^{t}\right)$
- Mixed strategy profile $\sigma=\left(\sigma_{1}, \sigma_{2}\right) \in \Delta(S)$ induces a probability distribution over $\left\{a_{1}(t), a_{2}(t)\right\}_{t=1}^{\infty}$ and $\{y(t)\}_{t=1}^{\infty}$

Let E_{σ} denote the expectation w.r.t. this distribution

- The average expected utility of player 1 is:

$$
U_{1}(\sigma, \omega)=E_{\sigma}\left[(1-\delta) \sum_{t=1}^{\infty} \delta^{t-1} u_{1}\left(a_{1}(t), y(t), \omega\right)\right]
$$

- Another way to think about mixed strategies, useful when type spaces are infinite
- Developed by Milgrom and Weber (1985)
- Requires Ω to be a Polish space
- A distributional strategy for player $1, \Omega_{1}$, is a probability measure on Borel sets of $\Omega \times S_{1}$
- Consistency requirement-the marginal distribution on Ω is μ
- Let \mathscr{S}_{1} denote all the distributional strategies of player 1
- Note that for any $\Omega^{+} \subset \Omega, \Omega_{1}\left(\Omega^{+}\right) \in \Delta\left(S_{1}\right)$ where

$$
\wedge_{1}\left(\Omega^{+}\right)\left(s_{1}\right)=\mu\left(\Omega^{+}\right)^{-1} \int_{\Omega^{+}} \varsigma_{1}\left(\omega, s_{1}\right) d \omega
$$

- Short-run players can have incorrect beliefs about long-run player's strategy if outcomes are insufficient to identify actions
- Related to self-confirming equilibrium in learning in games
- An action α_{2} is an ε-confirmed best response to α_{1} if (i) α_{2} is not weakly dominated and (ii) there exists some α_{1}^{\prime} such that:
- $\alpha_{2} \in \arg \max _{\alpha_{2}^{\prime}} v_{2}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)$
- $\left\|\rho\left(\cdot \mid\left(\alpha_{1}, \alpha_{2}\right)\right)-\rho\left(\cdot \mid\left(\alpha_{1}^{\prime}, \alpha_{2}\right)\right)\right\|_{\infty}<\varepsilon$
- Denote by $B_{\varepsilon}\left(\alpha_{1}\right)$ the set of ε-confirmed best responses to α_{1}
- $B_{0}\left(\alpha_{1}\right)$ is not the set of all undominated best responses
- These are generalized best responses (Fudenberg and Levine, 1989)
- A Nash equilibrium is $\left(\varkappa_{1}, \sigma_{2}\right) \in \mathscr{S}_{1} \times \Delta\left(S_{2}\right)$ so that σ_{2}^{t} is a best response to $\Omega_{1}(\Omega)$ and $\left(\omega, s_{1}\right) \in \operatorname{supp}\left(\Omega_{1}\right)$ implies s_{1} is a best response to σ_{2} by type ω
- Nash equilibrium exists
- Existence in finite truncations of the game proven by Milgrom and Weber (1985)
- Fudenberg and Levine (1983) show that for finite-action imperfect information games which are uniformly continuous mixed-strategy sequential equilibria exist
- Action spaces and signal spaces are finite, U_{1} and v_{2} are uniformly continuous
- Let $\underline{N}_{1}(\delta, \omega)$ and $\bar{N}_{1}(\delta, \omega)$ be the inf and sup of type ω 's payoff in any Nash equilibrium of the repeated game with discount rate δ
- Let ε-least commitment payoff for type ω be:

$$
\underline{v}_{1}(\omega, \varepsilon)=\sup _{\alpha_{1} \in \Delta\left(A_{1}\right)} \inf _{\alpha_{2} \in B_{\varepsilon}\left(\alpha_{1}\right)} v_{1}\left(\alpha_{1}, \alpha_{2}, \omega\right)-\varepsilon
$$

Let ε-greatest commitment payoff for type ω be:

$$
\bar{v}_{1}(\omega, \varepsilon)=\sup _{\alpha_{1} \in \Delta\left(A_{1}\right)} \sup _{\alpha_{2} \in B_{\varepsilon}\left(\alpha_{1}\right)} v_{1}\left(\alpha_{1}, \alpha_{2}, \omega\right)
$$

- $\bar{v}_{1}(\omega, 0)$ is generalized Stackelberg payoff

Main Theorem

Theorem (3.1). For all $\varepsilon>0$ there exists a K so that for all δ

$$
\begin{aligned}
& (1-\varepsilon) \delta^{K} \underline{v}_{1}\left(\omega_{0}, \varepsilon\right)+\left[1-(1-\varepsilon) \delta^{K}\right] \underline{u} \leq \underline{N}_{1}\left(\delta, \omega_{0}\right) \\
\leq & \bar{N}_{1}\left(\delta, \omega_{0}\right) \leq(1-\varepsilon) \delta^{K} \bar{v}_{1}\left(\omega_{0}, \varepsilon\right)+\left[1-(1-\varepsilon) \delta^{K}\right] \bar{u}
\end{aligned}
$$

- Upper bound seems weak, but is not
- Benabou and Laroque (1988) show that a long-run player can attain utility higher than his Stackelberg payoff for low δ
- Later we will prove that this is impossible as $\delta \rightarrow 1$
- Before proving this theorem, we state an ancillary theorem, which will be required to prove theorem 3.1

Theorem (4.1). For every $\varepsilon>0, \Delta_{0}>0$ and $\Omega^{+} \subset \Omega$ with $\mu\left(\Omega^{+}\right)>0$ there is a $K\left(\varepsilon, \Delta_{0}, \mu\left(\Omega^{+}\right)\right)$such that for any \wedge_{1} and σ_{2}, under the probability distribution generated by $\AA_{1}\left(\Omega^{+}\right)$, there is a probability less than ε that there are more than $K\left(\varepsilon, \Delta_{0}, \mu\left(\Omega^{+}\right)\right)$ periods with:

$$
\left\|p^{+}\left(h_{t-1}\right)-p\left(h_{t-1}\right)\right\|_{\infty}>\Delta_{0}
$$

Proof of Theorem 3.1. Fix a Nash equilibrium $\left(\varsigma_{1}, \sigma_{2}\right) ;\left(\varsigma_{1}, \sigma_{2}\right)$ and μ induce a joint probability distribution over types and histories.

Short-run players must use Bayesian updating in a Nash equilibrium to form posterior beliefs. Let $\alpha_{2}\left(h_{t-1}\right)$ denote the mixed action generated by σ_{2} which player 2_{t} plays following history h_{t-1}; similarly for $\alpha_{1}\left(h_{t-1}\right)$ and $\alpha_{1}^{+}\left(h_{t-1}\right)$. Let player 2_{t} 's prediction of the outcome conditional on h_{t-1} and equilibrium strategies be $p\left(h_{t-1}\right) \in \Delta(Y)$. Let $p^{+}\left(h_{t-1}\right)$ also condition on the true type being in Ω^{+}.

Short-run types almost have the correct distribution of outcomes even if they do not know that the long-run player's type is in Ω^{+}. A period is "exceptional" if short run players get a surprise in the above respect. Take $\Omega^{+}=\left\{\omega_{0}\right\}$ and $\Delta_{0}=\varepsilon$ and apply theorem 4.1. There exists a K so that in all but K periods with probability $(1-\varepsilon)$ we have:

$$
\left\|p^{+}\left(h_{t-1}\right)-p\left(h_{t-1}\right)\right\|_{\infty} \leq \varepsilon
$$

Thus with probability $(1-\varepsilon)$ player 2_{t} 's equilibrium action $\alpha_{2}\left(h_{t-1}\right) \in B_{\varepsilon}\left(\alpha_{1}^{+}\left(h_{t-1}\right)\right)$. If player 2_{t} expects an outcome ε-close to $p^{+}\left(h_{t-1}\right)$, then player 2_{t} must be playing a ε-confirmed best response to the mixed strategy that ω_{0} would play after history h_{t-1}.

Further, since commitment types have full support, player 2_{t} will not play a strategy that is weakly dominated, i.e., $\alpha_{2}\left(h_{t-1}\right) \in$ $B_{0}\left(\alpha_{1}\left(h_{t-1}\right)\right)$.

The payoff to rational player 1 is:
$U_{1}\left(\sigma^{+}, \omega_{0}\right)=E_{\sigma^{+}}\left[(1-\delta) \sum_{t=1}^{\infty} \delta^{t-1} v_{1}\left(\alpha_{1}^{+}\left(h_{t-1}\right), \alpha_{2}\left(h_{t-1}\right), \omega_{0}\right)\right]$
Rational player's payoff in exceptional periods is bounded above by \bar{u}. There are at most K exceptional periods (which occur with probability greater than ε) and $U_{1}\left(\sigma^{+}, \omega_{0}\right)$ is maximized if these occur at the start.

Type ω_{0} must want to play its equilibrium strategy and its equilibrium payoff in non-exceptional periods is at most $\bar{v}_{1}\left(\omega_{0}, \varepsilon\right)$. This proves the upper bound part of the theorem.
To prove the lower bound, use theorem 4.1 again, but take Ω^{+}to be a neighborhood of the "best" commitment type for the rational long-run player.
Fix any $\alpha_{1} \in \Delta\left(A_{1}\right)$ and take Ω^{+}to be the types which play mixed strategies α_{1}^{\prime} in the neighborhood of α_{1}. Let $\widetilde{\varepsilon}>0$ be such that if $\left|\alpha_{1}^{\prime}-\alpha_{1}\right|_{\infty} \leq \widetilde{\varepsilon}$, then $\left\|v_{1}\left(\alpha_{1}, \alpha_{2}, \omega_{0}\right)-v_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}, \omega_{0}\right)\right\|_{\infty}<\varepsilon$ and $\left\|\rho\left(\cdot \mid\left(\alpha_{1}, \alpha_{2}\right)\right)-\rho\left(\cdot \mid\left(\alpha_{1}^{\prime}, \alpha_{2}\right)\right)\right\|_{\infty}<\frac{\varepsilon}{2}$. Such $\widetilde{\varepsilon}$ exists since v_{1} and ρ are continuous and defined on compact sets. By definition $\left|\alpha_{1}^{+}\left(h_{t-1}\right)-\alpha_{1}\right|_{\infty} \leq \widetilde{\varepsilon}$.
Apply theorem 4.1, with Ω^{+}as defined above and $\Delta_{0}=\frac{\varepsilon}{2}$ and note that $\mu\left(\Omega^{+}\right)>0$. Suppose the rational player follows strategy α_{1}^{+}corresponding to some commitment type in Ω^{+}. In non-exceptional periods, with probability at least $(1-\varepsilon)$, player 2 plays an $\frac{\varepsilon}{2}$-confirmed best responds to this strategy, but since $\left\|v_{1}\left(\alpha_{1}, \alpha_{2}, \omega_{0}\right)-v_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}, \omega_{0}\right)\right\|_{\infty}<\varepsilon$, we have that in nonexceptional periods ω_{0} obtains payoff at least:

$$
\min _{\alpha_{2} \in B_{\varepsilon}\left(\alpha_{1}\right)} v_{1}\left(\alpha_{1}, \alpha_{2}, \omega_{0}\right)-\varepsilon .
$$

In exceptional periods the payoff is uniformly bounded from below by \underline{u}.

Corollary (3.2). Taking the limit as $\varepsilon \rightarrow 0$ we have that:

$$
\underline{v}_{1}\left(\omega_{0}, 0\right) \leq \liminf _{\delta \rightarrow 1} \underline{N}_{1}\left(\delta, \omega_{0}\right) \leq \limsup _{\delta \rightarrow 1} \bar{N}_{1}\left(\delta, \omega_{0}\right) \leq \bar{v}_{1}\left(\omega_{0}, 0\right) .
$$

Proof. From Theorem (3.1) need to show that:

$$
\begin{aligned}
\liminf _{\varepsilon \rightarrow 1} \underline{v}_{1}\left(\omega_{0}, \varepsilon\right) & \geq \underline{v}_{1}\left(\omega_{0}, 0\right), \text { and } \\
\limsup _{\varepsilon \rightarrow 1} \bar{v}_{1}\left(\omega_{0}, \varepsilon\right) & \leq \bar{v}_{1}\left(\omega_{0}, 0\right)
\end{aligned}
$$

Take $\left\{\varepsilon^{n}\right\}_{n=1}^{\infty} \rightarrow 0$ and $\alpha_{2}^{n} \in B_{\varepsilon^{n}}\left(\alpha_{1}\right)$ for all n and note that $\lim _{n} \alpha_{2}^{n} \in B_{0}\left(\alpha_{1}\right)$.
■ A game is non-degenerate if $\nexists a_{2} \in A_{2}$ which is undominated such that for some $\alpha_{2} \neq a_{2}, v\left(\cdot, \alpha_{2}\right)=v\left(\cdot, a_{2}\right)$.

- Satisfied for an open, dense set of payoffs
- A game is identified if for each α_{2} that is not weakly dominated $\rho\left(\cdot \mid \alpha_{1}, \alpha_{2}\right)=\rho\left(\cdot \mid \alpha_{1}^{\prime}, \alpha_{2}\right)$ implies $\alpha_{1}=\alpha_{1}^{\prime}$.

Theorem (3.3). In a non-degenerate, identified game $\underline{v}_{1}\left(\omega_{0}, 0\right)=$ $\bar{v}_{1}\left(\omega_{0}, 0\right)$.

■ Generically, average payoff of a patient long-run player in any
NE is determined by reputation effects if actions are observed
Proof of Theorem 3.3. Since the game is identified $B_{0}\left(\alpha_{1}\right)$ the set of 0 -confirmed best responses is simply the set of undominated best responses to α_{1}. Suffices to show that for $\alpha_{2} \in B_{0}\left(\alpha_{1}\right)$, there exists a sequence $\left\{\alpha_{1}^{n}\right\}_{n=1}^{\infty}$ which converges to α_{1} such that:

$$
\left\{\alpha_{2}\right\}=B_{0}\left(\alpha_{1}^{n}\right)
$$

There exists some mixed action $\alpha_{1}^{\prime} \in \Delta\left(A_{1}\right)$ such that α_{2} is a strict best response to α_{1}^{\prime}. Take a sequence $\left\{\kappa^{n}\right\}_{n=1}^{\infty}$ such that $\kappa^{n} \in(0,1)$ and $\kappa^{n} \rightarrow 1$. Define $\alpha_{1}^{n}=\kappa^{n} \alpha_{1}+\left(1-\kappa^{n}\right) \alpha_{1}^{\prime}$. Note that α_{2} is a strict best response to α_{1}^{n}.

Remarks about the Technical Result

- The main technical contribution of the paper is theorem 4.1, restated here for convenience

Theorem (4.1). For every $\varepsilon>0, \Delta_{0}>0$ and $\Omega^{+} \subset \Omega$ with $\mu\left(\Omega^{+}\right)>0$ there is a $K\left(\varepsilon, \Delta_{0}, \mu\left(\Omega^{+}\right)\right)$such that for any \wedge_{1} and σ_{2}, under the probability distribution generated by $\varsigma_{1}\left(\Omega^{+}\right)$, there is a probability less than ε that there are more than $K\left(\varepsilon, \Delta_{0}, \mu\left(\Omega^{+}\right)\right)$ periods with:

$$
\left\|p^{+}\left(h_{t-1}\right)-p\left(h_{t-1}\right)\right\|>\Delta_{0} .
$$

■ To prove the above, first show that the odds ratio is a supermartingale (lemma 4.1)

- Supermartingales converge almost surely, but not uniformly
- Fudenberg and Levine show that active supermartingales converge uniformly

To show the rest of the theorem, note that in exceptional periods, there is a substantial (i.e., greater than Δ_{0}) probability that the short run player will be substantially wrong in their forecast

- Thus, the supermartingale L_{t} is active, in the sense that L_{t} has a significant probability of decreasing by a sizable fraction
- Use the level of activity of a supermartingale to get a bound for the number of exceptional periods

■ Sorin (1999) remarks that Theorem 4.1 is a "uniform version" of the merging of beliefs theorem by Blackwell and Dubins (1962)

- Blackwell and Dubins (1962) consider when posterior beliefs of individuals will merge, if individuals start with different priors and observe the same outcomes

Concluding Remarks

■ Introducing reputation yields a sharp prediction for the payoff of patient long-run players

■ Generically, if the long-run player's action is statistically identified, the long-run player obtains his Stackelberg payoff

