
Maintaining a Reputation when
Strategies are Imperfectly Observed
Fudenberg and Levine (ReStud, 1992) summary by N. Antić

In a repeated game players can develop a reputation for playing
in a speci�c way. Building a reputation can take time, so patient
players are more likely to invest.

Example

� The main point of this paper can be illustrated in a repeated
"Chain Store Paradox" exampleb������
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Figure 1: Stage game of the chain store paradox

� Monopolist facing an in�nite sequence of potential entrants, can
respond aggressively or passively

� Period t entrant observes the entire preceding history

� Assume the monopolist can be a commitment type with a pref-
erence for �ghting

� All entrants have a common prior about this, " > 0

Theorem. In any sequential equilibrium, if � is close to 1, then
player 1�s expected average payo¤ in equilibrium is close to 2.

Proof Sketch. Fix a sequential equilibrium and let t be the �rst pe-
riod that player 1 plays "Acquiesce". If t = 1, player 2 is playing
"Stay Out" and player 1 gets payo¤ 2. If t < 1, then deviating to
playing "Fight" in all periods will give payo¤ at least �1 in period
t and say s periods after it (until player 1�s posterior is su¢ ciently
high) and payo¤ 2 in subsequent periods.

� Result extends to �nite number of commitment types

The Basic Environment

� 2 Players in each period, player 1 (the long-run player) and
Player 2 (one of a sequence of short-run players)

� Denote short-run player in period t by player 2t

� Stage game pure action sets, A1 and A2, are �nite (not critical)

� Denote mixed actions by �i 2 �(Ai)

� Imperfect public monitoring

� Players observe a random outcome y 2 Y , where jY j =
M <1

� Given action pro�le a 2 A, the probability of signal y is
� (yja)

� Includes perfect monitoring as a special case

� Another special case is an extensive form stage game where
only terminal payo¤s are observable

� All short-run players have a single type

� Payo¤ of player 2 is common knowledge

� Depends only on public signal y and not directly on a1
� Same assumption for long-run players

� Short-run players�vNM utility index is u2 : Y �A2 ! R

� Player 2�s expected payo¤ from mixed action � 2 �(A) is

v2 (�) =
X

(a1;a2)2A

u2 (y; a2) � (yj (a1; a2))�1 (a1)�2 (a2)

� Player 1�s type space, 
, is a metric space

� Common knowledge that short-run players have identical prior,
�, about player 1�s type

� � is a measure on B(
)

� Rational type, !0 2 
, has stationary preferences over time,
with vNM utility index u1 (�1; y; !0)

� Assume � (!0) > 0

� Commitment types have a preference for playing a certain
action� including mixed actions

� Will need commitment types with preferences for all mixed
actions

� Trick to make them expected utility maximizers (non-
stationary preferences over time)

� Utility index for player 1 is uniformly bounded: u1 (�1; y; !) 2
[u; u] for all !

� Assume commitment types have full support

� Let � be the measure on mixed actions induced by �
� By LDT write � = �0 + �1, where �0 � �

� Assume Radon-Nykodym derivative of �0 is bounded away
from 0

Equilibrium

� History for player 2 is the public history Ht 2 Y t

� Pure strategy for player 2t is st2 : Ht�1 ! A2

� St2 denotes the set of all pure strategies for player 2t

� Player 1 knows the public history and his private history H1
t 2

(A1)
t

� Pure strategy for player 1 in period t is s1 = fst1g
1
t=1 where

st1 : Ht�1 �H1
t�1 ! A1

� S1 denotes the set of all pure strategies for player 1

� Mixed strategies for players 1 and 2t are �1 2 �(S1) and �t2 2
�(St2), respectively

� A mixed strategy for player 2 is �2 2 �(�1t=1St2)

� Mixed strategy pro�le � = (�1; �2) 2 �(S) induces a probabil-
ity distribution over fa1 (t) ; a2 (t)g1t=1 and fy (t)g

1
t=1

� Let E� denote the expectation w.r.t. this distribution
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� The average expected utility of player 1 is:

U1 (�; !) = E�

"
(1� �)

1X
t=1

�t�1u1 (a1 (t) ; y (t) ; !)

#

� Another way to think about mixed strategies, useful when type
spaces are in�nite

� Developed by Milgrom and Weber (1985)

� Requires 
 to be a Polish space

� A distributional strategy for player 1, s1, is a probability
measure on Borel sets of 
� S1

� Consistency requirement� the marginal distribution on 

is �

� Let S1 denote all the distributional strategies of player 1

� Note that for any 
+ � 
, s1(
+) 2 �(S1) where

s1(
+) (s1) = �
�

+
��1 Z


+
s1(!; s1)d!

� Short-run players can have incorrect beliefs about long-run
player�s strategy if outcomes are insu¢ cient to identify actions

� Related to self-con�rming equilibrium in learning in games

� An action �2 is an "-con�rmed best response to �1 if (i)
�2 is not weakly dominated and (ii) there exists some �01 such
that:

� �2 2 argmax�02 v2 (�
0
1; �

0
2)

� k� (�j (�1; �2))� � (�j (�01; �2))k1 < "

� Denote by B" (�1) the set of "-con�rmed best responses to �1

� B0 (�1) is not the set of all undominated best responses

� These are generalized best responses (Fudenberg and
Levine, 1989)

� A Nash equilibrium is (s1; �2) 2S1��(S2) so that �t2 is a
best response to s1(
) and (!; s1) 2 supp(s1) implies s1 is a best
response to �2 by type !

� Nash equilibrium exists

� Existence in �nite truncations of the game proven by Mil-
grom and Weber (1985)

� Fudenberg and Levine (1983) show that for �nite-action
imperfect information games which are uniformly continu-
ous mixed-strategy sequential equilibria exist

� Action spaces and signal spaces are �nite, U1 and v2 are
uniformly continuous

� Let N1 (�; !) and N1 (�; !) be the inf and sup of type !�s payo¤
in any Nash equilibrium of the repeated game with discount rate
�

� Let "-least commitment payo¤ for type ! be:

v1 (!; ") = sup
�12�(A1)

inf
�22B"(�1)

v1 (�1; �2; !)� "

� Let "-greatest commitment payo¤ for type ! be:

v1 (!; ") = sup
�12�(A1)

sup
�22B"(�1)

v1 (�1; �2; !)

� v1 (!; 0) is generalized Stackelberg payo¤

Main Theorem

Theorem (3.1). For all " > 0 there exists a K so that for all �

(1� ") �Kv1 (!0; ") +
h
1� (1� ") �K

i
u � N1 (�; !0)

� N1 (�; !0) � (1� ") �Kv1 (!0; ") +
h
1� (1� ") �K

i
u.

� Upper bound seems weak, but is not

� Benabou and Laroque (1988) show that a long-run player
can attain utility higher than his Stackelberg payo¤ for low
�

� Later we will prove that this is impossible as � ! 1

� Before proving this theorem, we state an ancillary theorem,
which will be required to prove theorem 3.1

Theorem (4.1). For every " > 0, �0 > 0 and 
+ � 
 with
� (
+) > 0 there is a K (";�0; � (
+)) such that for any s1 and
�2, under the probability distribution generated by s1(
+), there is
a probability less than " that there are more than K (";�0; � (
+))
periods with: 

p+ (ht�1)� p (ht�1)

1 > �0.

Proof of Theorem 3.1. Fix a Nash equilibrium (s1; �2); (s1; �2) and
� induce a joint probability distribution over types and histories.
Short-run players must use Bayesian updating in a Nash equi-

librium to form posterior beliefs. Let �2 (ht�1) denote the mixed
action generated by �2 which player 2t plays following history ht�1;
similarly for �1 (ht�1) and �

+
1 (ht�1). Let player 2t�s prediction

of the outcome conditional on ht�1 and equilibrium strategies be
p (ht�1) 2 �(Y ). Let p+ (ht�1) also condition on the true type
being in 
+.
Short-run types almost have the correct distribution of outcomes

even if they do not know that the long-run player�s type is in 
+.
A period is "exceptional" if short run players get a surprise in the
above respect. Take 
+ = f!0g and �0 = " and apply theorem
4.1. There exists a K so that in all but K periods with probability
(1� ") we have: 

p+ (ht�1)� p (ht�1)

1 � ".

Thus with probability (1� ") player 2t�s equilibrium action
�2 (ht�1) 2 B"

�
�+1 (ht�1)

�
. If player 2t expects an outcome "-close

to p+ (ht�1), then player 2t must be playing a "-con�rmed best re-
sponse to the mixed strategy that !0 would play after history ht�1.
Further, since commitment types have full support, player 2t will

not play a strategy that is weakly dominated, i.e., �2 (ht�1) 2
B0 (�1 (ht�1)).
The payo¤ to rational player 1 is:

U1
�
�+; !0

�
= E�+

"
(1� �)

1X
t=1

�t�1v1
�
�+1 (ht�1) ; �2 (ht�1) ; !0

�#
.

Rational player�s payo¤ in exceptional periods is bounded above
by u. There are at most K exceptional periods (which occur with
probability greater than ") and U1 (�+; !0) is maximized if these
occur at the start.
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Type !0 must want to play its equilibrium strategy and its equi-
librium payo¤ in non-exceptional periods is at most v1 (!0; "). This
proves the upper bound part of the theorem.
To prove the lower bound, use theorem 4.1 again, but take 
+ to

be a neighborhood of the "best" commitment type for the rational
long-run player.
Fix any �1 2 �(A1) and take 
+ to be the types which play

mixed strategies �01 in the neighborhood of �1. Let e" > 0 be such
that if j�01 � �1j1 � e", then kv1 (�1; �2; !0)� v1 (�01; �2; !0)k1 < "
and k� (�j (�1; �2))� � (�j (�01; �2))k1 < "

2 . Such e" exists since v1
and � are continuous and de�ned on compact sets. By de�nition���+1 (ht�1)� �1��1 � e".
Apply theorem 4.1, with 
+ as de�ned above and �0 = "

2
and note that � (
+) > 0. Suppose the rational player follows
strategy �+1 corresponding to some commitment type in 
+. In
non-exceptional periods, with probability at least (1� "), player
2 plays an "

2 -con�rmed best responds to this strategy, but since
kv1 (�1; �2; !0)� v1 (�01; �2; !0)k1 < ", we have that in non-
exceptional periods !0 obtains payo¤ at least:

min
�22B"(�1)

v1 (�1; �2; !0)� ".

In exceptional periods the payo¤ is uniformly bounded from below
by u.

Corollary (3.2). Taking the limit as "! 0 we have that:

v1 (!0; 0) � lim inf
�!1

N1 (�; !0) � lim sup
�!1

N1 (�; !0) � v1 (!0; 0) .

Proof. From Theorem (3.1) need to show that:

lim inf
"!1

v1 (!0; ") � v1 (!0; 0) , and

lim sup
"!1

v1 (!0; ") � v1 (!0; 0) .

Take f"ng1n=1 ! 0 and �n2 2 B"n (�1) for all n and note that
limn �

n
2 2 B0 (�1).

� A game is non-degenerate if @a2 2 A2 which is undominated
such that for some �2 6= a2, v (�; �2) = v (�; a2).

� Satis�ed for an open, dense set of payo¤s

� A game is identi�ed if for each �2 that is not weakly dominated
� (�j�1; �2) = � (�j�01; �2) implies �1 = �01.

Theorem (3.3). In a non-degenerate, identi�ed game v1 (!0; 0) =
v1 (!0; 0).

� Generically, average payo¤ of a patient long-run player in any
NE is determined by reputation e¤ects if actions are observed

Proof of Theorem 3.3. Since the game is identi�ed B0 (�1) the set
of 0-con�rmed best responses is simply the set of undominated best
responses to �1. Su¢ ces to show that for �2 2 B0 (�1), there exists
a sequence f�n1g

1
n=1 which converges to �1 such that:

f�2g = B0 (�n1 ) .

There exists some mixed action �01 2 �(A1) such that �2 is a strict
best response to �01. Take a sequence f�ng

1
n=1 such that �

n 2 (0; 1)
and �n ! 1. De�ne �n1 = �n�1 + (1� �n)�01. Note that �2 is a
strict best response to �n1 .

Remarks about the Technical Result

� The main technical contribution of the paper is theorem 4.1,
restated here for convenience

Theorem (4.1). For every " > 0, �0 > 0 and 
+ � 
 with
� (
+) > 0 there is a K (";�0; � (
+)) such that for any s1 and
�2, under the probability distribution generated by s1(
+), there is
a probability less than " that there are more than K (";�0; � (
+))
periods with: 

p+ (ht�1)� p (ht�1)

 > �0.
� To prove the above, �rst show that the odds ratio is a super-
martingale (lemma 4.1)

� Supermartingales converge almost surely, but not uni-
formly

� Fudenberg and Levine show that active supermartingales
converge uniformly

� To show the rest of the theorem, note that in exceptional pe-
riods, there is a substantial (i.e., greater than �0) probability
that the short run player will be substantially wrong in their
forecast

� Thus, the supermartingale Lt is active, in the sense that
Lt has a signi�cant probability of decreasing by a sizable
fraction

� Use the level of activity of a supermartingale to get a bound
for the number of exceptional periods

� Sorin (1999) remarks that Theorem 4.1 is a "uniform version" of
the merging of beliefs theorem by Blackwell and Dubins (1962)

� Blackwell and Dubins (1962) consider when posterior be-
liefs of individuals will merge, if individuals start with dif-
ferent priors and observe the same outcomes

Concluding Remarks

� Introducing reputation yields a sharp prediction for the payo¤
of patient long-run players

� Generically, if the long-run player�s action is statistically iden-
ti�ed, the long-run player obtains his Stackelberg payo¤
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