Maintaining a Reputation when Strategies are Imperfectly Observed

Fudenberg and Levine (ReStud, 1992) summary by N. Antié

In a repeated game players can develop a reputation for playing in a specific way. Building a reputation can take time, so patient players are more likely to invest.

Example

■ The main point of this paper can be illustrated in a repeated "Chain Store Paradox" example

Figure 1: Stage game of the chain store paradox

- Monopolist facing an infinite sequence of potential entrants, can respond aggressively or passively
 - Period t entrant observes the entire preceding history
- Assume the monopolist can be a commitment type with a preference for fighting
 - All entrants have a common prior about this, $\varepsilon > 0$

Theorem. In any sequential equilibrium, if δ is close to 1, then player 1's expected average payoff in equilibrium is close to 2.

Proof Sketch. Fix a sequential equilibrium and let t be the first period that player 1 plays "Acquiesce". If $t = \infty$, player 2 is playing "Stay Out" and player 1 gets payoff 2. If $t < \infty$, then deviating to playing "Fight" in all periods will give payoff at least -1 in period t and say s periods after it (until player 1's posterior is sufficiently high) and payoff 2 in subsequent periods.

Result extends to finite number of commitment types

The Basic Environment

- 2 Players in each period, player 1 (the long-run player) and Player 2 (one of a sequence of short-run players)
 - Denote short-run player in period t by player 2_t
- \blacksquare Stage game pure action sets, A_1 and A_2 , are finite (not critical)
 - Denote mixed actions by $\alpha_i \in \Delta(A_i)$
- Imperfect public monitoring
 - Players observe a random outcome $y \in Y$, where $|Y| = M < \infty$
 - Given action profile $a \in A$, the probability of signal y is $\rho(y|a)$
- Includes perfect monitoring as a special case
 - Another special case is an extensive form stage game where only terminal payoffs are observable

- All short-run players have a single type
- Payoff of player 2 is common knowledge
 - Depends only on public signal y and not directly on a_1
 - Same assumption for long-run players
- $\blacksquare \text{ Short-run players' vNM utility index is } u_2 \colon Y \times A_2 \to \mathbb{R}$
 - Player 2's expected payoff from mixed action $\alpha \in \Delta(A)$ is

$$v_{2}(\alpha) = \sum_{(a_{1},a_{2})\in A} u_{2}(y,a_{2}) \rho(y|(a_{1},a_{2})) \alpha_{1}(a_{1}) \alpha_{2}(a_{2})$$

- **\blacksquare** Player 1's type space, Ω , is a metric space
- Common knowledge that short-run players have identical prior, μ , about player 1's type
 - μ is a measure on $\mathcal{B}(\Omega)$
- Rational type, $\omega_0 \in \Omega$, has stationary preferences over time, with vNM utility index $u_1(\alpha_1, y, \omega_0)$
- $\blacksquare Assume \mu(\omega_0) > 0$
- Commitment types have a preference for playing a certain action—including mixed actions
 - Will need commitment types with preferences for all mixed actions
 - Trick to make them expected utility maximizers (nonstationary preferences over time)
- Utility index for player 1 is uniformly bounded: $u_1(\alpha_1, y, \omega) \in [\underline{u}, \overline{u}]$ for all ω
- Assume commitment types have full support
 - Let η be the measure on mixed actions induced by μ
 - By LDT write $\eta = \eta_0 + \eta_1$, where $\eta_0 \ll \lambda$
 - Assume Radon-Nykodym derivative of η_0 is bounded away from 0

Equilibrium

- $\blacksquare \text{ History for player 2 is the public history } H_t \in Y^t$
- $\blacksquare Pure strategy for player 2_t is s_2^t \colon H_{t-1} \to A_2$
 - S_2^t denotes the set of all pure strategies for player 2_t
- Player 1 knows the public history and his private history $H_t^1 \in (A_1)^t$
- Pure strategy for player 1 in period t is $s_1 = \{s_1^t\}_{t=1}^{\infty}$ where $s_1^t \colon H_{t-1} \times H_{t-1}^1 \to A_1$
 - S_1 denotes the set of all pure strategies for player 1
- Mixed strategies for players 1 and 2_t are $\sigma_1 \in \Delta(S_1)$ and $\sigma_2^t \in \Delta(S_2^t)$, respectively
- A mixed strategy for player 2 is $\sigma_2 \in \Delta(\times_{t=1}^{\infty} S_2^t)$
- Mixed strategy profile $\sigma = (\sigma_1, \sigma_2) \in \Delta(S)$ induces a probability distribution over $\{a_1(t), a_2(t)\}_{t=1}^{\infty}$ and $\{y(t)\}_{t=1}^{\infty}$
- Let E_{σ} denote the expectation w.r.t. this distribution

• The average expected utility of player 1 is:

$$U_{1}(\sigma,\omega) = E_{\sigma}\left[\left(1-\delta\right)\sum_{t=1}^{\infty}\delta^{t-1}u_{1}\left(a_{1}(t), y(t), \omega\right)\right]$$

- Another way to think about mixed strategies, useful when type spaces are infinite
 - Developed by Milgrom and Weber (1985)
 - Requires Ω to be a Polish space
- A distributional strategy for player 1, \mathscr{I}_1 , is a probability measure on Borel sets of $\Omega \times S_1$
 - Consistency requirement—the marginal distribution on Ω is μ
- \blacksquare Let \mathcal{S}_1 denote all the distributional strategies of player 1
- Note that for any $\Omega^+ \subset \Omega$, $\mathscr{A}(\Omega^+) \in \Delta(S_1)$ where

$$\mathscr{I}(\Omega^{+})(s_{1}) = \mu \left(\Omega^{+}\right)^{-1} \int_{\Omega^{+}} \mathscr{I}(\omega, s_{1}) d\omega$$

- Short-run players can have incorrect beliefs about long-run player's strategy if outcomes are insufficient to identify actions
 - Related to self-confirming equilibrium in learning in games
- An action α_2 is an ε -confirmed best response to α_1 if (i) α_2 is not weakly dominated and (ii) there exists some α'_1 such that:
 - $\alpha_2 \in \arg \max_{\alpha'_2} v_2(\alpha'_1, \alpha'_2)$
 - $\left\|\rho\left(\cdot \mid (\alpha_1, \alpha_2)\right) \rho\left(\cdot \mid (\alpha'_1, \alpha_2)\right)\right\|_{\infty} < \varepsilon$
- \blacksquare Denote by $B_{\varepsilon}(\alpha_1)$ the set of ε -confirmed best responses to α_1
- \blacksquare $B_0(\alpha_1)$ is **not** the set of all undominated best responses
 - These are generalized best responses (Fudenberg and Levine, 1989)
- A Nash equilibrium is $(\mathscr{A}_1, \sigma_2) \in \mathscr{H} \times \Delta(S_2)$ so that σ_2^t is a best response to $\mathscr{A}_1(\Omega)$ and $(\omega, s_1) \in supp(\mathscr{A}_1)$ implies s_1 is a best response to σ_2 by type ω
- Nash equilibrium exists
 - Existence in finite truncations of the game proven by Milgrom and Weber (1985)
 - Fudenberg and Levine (1983) show that for finite-action imperfect information games which are uniformly continuous mixed-strategy sequential equilibria exist
 - Action spaces and signal spaces are finite, U_1 and v_2 are uniformly continuous
- Let $\underline{N}_1(\delta, \omega)$ and $\overline{N}_1(\delta, \omega)$ be the inf and sup of type ω 's payoff in any Nash equilibrium of the repeated game with discount rate δ
- $\blacksquare \text{ Let } \varepsilon \text{-least commitment payoff for type } \omega \text{ be:}$

$$\underline{v}_{1}(\omega,\varepsilon) = \sup_{\alpha_{1} \in \Delta(A_{1})} \inf_{\alpha_{2} \in B_{\varepsilon}(\alpha_{1})} v_{1}(\alpha_{1},\alpha_{2},\omega) - \varepsilon$$

 $\blacksquare \text{ Let } \varepsilon \text{-greatest commitment payoff for type } \omega \text{ be:}$

$$\overline{v}_{1}(\omega,\varepsilon) = \sup_{\alpha_{1}\in\Delta(A_{1})} \sup_{\alpha_{2}\in B_{\varepsilon}(\alpha_{1})} v_{1}(\alpha_{1},\alpha_{2},\omega)$$

 $\blacksquare \overline{v}_1(\omega, 0)$ is generalized Stackelberg payoff

Main Theorem

Theorem (3.1). For all $\varepsilon > 0$ there exists a K so that for all δ

$$(1 - \varepsilon) \,\delta^{K} \underline{v}_{1}(\omega_{0}, \varepsilon) + \left[1 - (1 - \varepsilon) \,\delta^{K}\right] \underline{u} \leq \underline{N}_{1}(\delta, \omega_{0})$$

$$\leq \overline{N}_{1}(\delta, \omega_{0}) \leq (1 - \varepsilon) \,\delta^{K} \overline{v}_{1}(\omega_{0}, \varepsilon) + \left[1 - (1 - \varepsilon) \,\delta^{K}\right] \overline{u}.$$

- Upper bound seems weak, but is not
 - Benabou and Laroque (1988) show that a long-run player can attain utility higher than his Stackelberg payoff for low δ
 - Later we will prove that this is impossible as $\delta \to 1$
- Before proving this theorem, we state an ancillary theorem, which will be required to prove theorem 3.1

Theorem (4.1). For every $\varepsilon > 0$, $\Delta_0 > 0$ and $\Omega^+ \subset \Omega$ with $\mu(\Omega^+) > 0$ there is a $K(\varepsilon, \Delta_0, \mu(\Omega^+))$ such that for any \mathfrak{A}_1 and σ_2 , under the probability distribution generated by $\mathfrak{A}_1(\Omega^+)$, there is a probability less than ε that there are more than $K(\varepsilon, \Delta_0, \mu(\Omega^+))$ periods with:

$$\left\| p^{+}(h_{t-1}) - p(h_{t-1}) \right\|_{\infty} > \Delta_{0}.$$

Proof of Theorem 3.1. Fix a Nash equilibrium $(\mathcal{A}_1, \sigma_2)$; $(\mathcal{A}_1, \sigma_2)$ and μ induce a joint probability distribution over types and histories.

Short-run players must use Bayesian updating in a Nash equilibrium to form posterior beliefs. Let $\alpha_2(h_{t-1})$ denote the mixed action generated by σ_2 which player 2_t plays following history h_{t-1} ; similarly for $\alpha_1(h_{t-1})$ and $\alpha_1^+(h_{t-1})$. Let player 2_t 's prediction of the outcome conditional on h_{t-1} and equilibrium strategies be $p(h_{t-1}) \in \Delta(Y)$. Let $p^+(h_{t-1})$ also condition on the true type being in Ω^+ .

Short-run types almost have the correct distribution of outcomes even if they do not know that the long-run player's type is in Ω^+ . A period is "exceptional" if short run players get a surprise in the above respect. Take $\Omega^+ = \{\omega_0\}$ and $\Delta_0 = \varepsilon$ and apply theorem 4.1. There exists a K so that in all but K periods with probability $(1 - \varepsilon)$ we have:

$$\left\|p^{+}\left(h_{t-1}\right) - p\left(h_{t-1}\right)\right\|_{\infty} \leq \varepsilon.$$

Thus with probability $(1 - \varepsilon)$ player 2_t 's equilibrium action $\alpha_2(h_{t-1}) \in B_{\varepsilon}(\alpha_1^+(h_{t-1}))$. If player 2_t expects an outcome ε -close to $p^+(h_{t-1})$, then player 2_t must be playing a ε -confirmed best response to the mixed strategy that ω_0 would play after history h_{t-1} .

Further, since commitment types have full support, player 2_t will not play a strategy that is weakly dominated, i.e., $\alpha_2(h_{t-1}) \in B_0(\alpha_1(h_{t-1}))$.

The payoff to rational player 1 is:

$$U_1(\sigma^+, \omega_0) = E_{\sigma^+} \left[(1-\delta) \sum_{t=1}^{\infty} \delta^{t-1} v_1(\alpha_1^+(h_{t-1}), \alpha_2(h_{t-1}), \omega_0) \right].$$

Rational player's payoff in exceptional periods is bounded above by \overline{u} . There are at most K exceptional periods (which occur with probability greater than ε) and $U_1(\sigma^+, \omega_0)$ is maximized if these occur at the start. Type ω_0 must want to play its equilibrium strategy and its equilibrium payoff in non-exceptional periods is at most $\overline{v}_1(\omega_0, \varepsilon)$. This proves the upper bound part of the theorem.

To prove the lower bound, use theorem 4.1 again, but take Ω^+ to be a neighborhood of the "best" commitment type for the rational long-run player.

Fix any $\alpha_1 \in \Delta(A_1)$ and take Ω^+ to be the types which play mixed strategies α'_1 in the neighborhood of α_1 . Let $\tilde{\varepsilon} > 0$ be such that if $|\alpha'_1 - \alpha_1|_{\infty} \leq \tilde{\varepsilon}$, then $||v_1(\alpha_1, \alpha_2, \omega_0) - v_1(\alpha'_1, \alpha_2, \omega_0)||_{\infty} < \varepsilon$ and $||\rho(\cdot|(\alpha_1, \alpha_2)) - \rho(\cdot|(\alpha'_1, \alpha_2))||_{\infty} < \frac{\varepsilon}{2}$. Such $\tilde{\varepsilon}$ exists since v_1 and ρ are continuous and defined on compact sets. By definition $|\alpha^+_1(h_{t-1}) - \alpha_1|_{\infty} \leq \tilde{\varepsilon}$. Apply theorem 4.1, with Ω^+ as defined above and $\Delta_0 = \frac{\varepsilon}{2}$

Apply theorem 4.1, with Ω^+ as defined above and $\Delta_0 = \frac{\varepsilon}{2}$ and note that $\mu(\Omega^+) > 0$. Suppose the rational player follows strategy α_1^+ corresponding to some commitment type in Ω^+ . In non-exceptional periods, with probability at least $(1 - \varepsilon)$, player 2 plays an $\frac{\varepsilon}{2}$ -confirmed best responds to this strategy, but since $\|v_1(\alpha_1, \alpha_2, \omega_0) - v_1(\alpha'_1, \alpha_2, \omega_0)\|_{\infty} < \varepsilon$, we have that in nonexceptional periods ω_0 obtains payoff at least:

$$\min_{\alpha_2 \in B_{\varepsilon}(\alpha_1)} v_1(\alpha_1, \alpha_2, \omega_0) - \varepsilon.$$

In exceptional periods the payoff is uniformly bounded from below by \underline{u} .

Corollary (3.2). Taking the limit as $\varepsilon \to 0$ we have that:

$$\underline{v}_{1}(\omega_{0},0) \leq \liminf_{\delta \to 1} \underline{N}_{1}(\delta,\omega_{0}) \leq \limsup_{\delta \to 1} \overline{N}_{1}(\delta,\omega_{0}) \leq \overline{v}_{1}(\omega_{0},0).$$

Proof. From Theorem (3.1) need to show that:

$$\liminf_{\varepsilon \to 1} \underline{v}_1(\omega_0, \varepsilon) \geq \underline{v}_1(\omega_0, 0), \text{ and}$$
$$\limsup_{\varepsilon \to 1} \overline{v}_1(\omega_0, \varepsilon) \leq \overline{v}_1(\omega_0, 0).$$

Take $\{\varepsilon^n\}_{n=1}^{\infty} \to 0$ and $\alpha_2^n \in B_{\varepsilon^n}(\alpha_1)$ for all n and note that $\lim_n \alpha_2^n \in B_0(\alpha_1)$.

- A game is non-degenerate if $\nexists a_2 \in A_2$ which is undominated such that for some $\alpha_2 \neq a_2$, $v(\cdot, \alpha_2) = v(\cdot, a_2)$.
 - Satisfied for an open, dense set of payoffs
- A game is identified if for each α_2 that is not weakly dominated $\rho(\cdot|\alpha_1, \alpha_2) = \rho(\cdot|\alpha'_1, \alpha_2)$ implies $\alpha_1 = \alpha'_1$.

Theorem (3.3). In a non-degenerate, identified game $\underline{v}_1(\omega_0, 0) = \overline{v}_1(\omega_0, 0)$.

■ Generically, average payoff of a patient long-run player in any NE is determined by reputation effects if actions are observed

Proof of Theorem 3.3. Since the game is identified $B_0(\alpha_1)$ the set of 0-confirmed best responses is simply the set of undominated best responses to α_1 . Suffices to show that for $\alpha_2 \in B_0(\alpha_1)$, there exists a sequence $\{\alpha_1^n\}_{n=1}^{\infty}$ which converges to α_1 such that:

$$\{\alpha_2\} = B_0\left(\alpha_1^n\right).$$

There exists some mixed action $\alpha'_1 \in \Delta(A_1)$ such that α_2 is a strict best response to α'_1 . Take a sequence $\{\kappa^n\}_{n=1}^{\infty}$ such that $\kappa^n \in (0, 1)$ and $\kappa^n \to 1$. Define $\alpha_1^n = \kappa^n \alpha_1 + (1 - \kappa^n) \alpha'_1$. Note that α_2 is a strict best response to α_1^n .

Remarks about the Technical Result

■ The main technical contribution of the paper is theorem 4.1, restated here for convenience

Theorem (4.1). For every $\varepsilon > 0$, $\Delta_0 > 0$ and $\Omega^+ \subset \Omega$ with $\mu(\Omega^+) > 0$ there is a $K(\varepsilon, \Delta_0, \mu(\Omega^+))$ such that for any \mathscr{A}_1 and σ_2 , under the probability distribution generated by $\mathscr{A}_1(\Omega^+)$, there is a probability less than ε that there are more than $K(\varepsilon, \Delta_0, \mu(\Omega^+))$ periods with:

$$\left\| p^{+}(h_{t-1}) - p(h_{t-1}) \right\| > \Delta_{0}$$

- To prove the above, first show that the odds ratio is a supermartingale (lemma 4.1)
 - Supermartingales converge almost surely, but not uniformly
 - Fudenberg and Levine show that *active* supermartingales converge uniformly
- To show the rest of the theorem, note that in exceptional periods, there is a substantial (i.e., greater than Δ_0) probability that the short run player will be substantially wrong in their forecast
 - Thus, the supermartingale L_t is active, in the sense that L_t has a significant probability of decreasing by a sizable fraction
 - Use the level of activity of a supermartingale to get a bound for the number of exceptional periods
- Sorin (1999) remarks that Theorem 4.1 is a "uniform version" of the merging of beliefs theorem by Blackwell and Dubins (1962)
 - Blackwell and Dubins (1962) consider when posterior beliefs of individuals will merge, if individuals start with different priors and observe the same outcomes

Concluding Remarks

- Introducing reputation yields a sharp prediction for the payoff of patient long-run players
- Generically, if the long-run player's action is statistically identified, the long-run player obtains his Stackelberg payoff